Empathy: Part Of The New Operating System For Our Modern World
Jean Lievins: Bioengineers Build Open Source Language for Programming Cells
ScienceBioengineers Build Open Source Language for Programming Cells
- 04.19.13
Drew Endy wants to build a programming language for the body.
Endy is the co-director of the International Open Facility Advancing Biotechnology — BIOFAB, for short — where he’s part of a team that’s developing a language that will use genetic data to actually program biological cells. That may seem like the stuff of science fiction, but the project is already underway, and the team intends to open source the language, so that other scientists can use it and modify it and perfect it.
The effort is part of a sweeping movement to grab hold of our genetic data and directly improve the way our bodies behave — a process known as bioengineering. With the Supreme Court exploring whether genes can be patented, the bioengineering world is at crossroads, but scientists like Endy continue to push this technology forward.
Genes contain information that defines the way our cells function, and some parts of the genome express themselves in much the same way across different types of cells and organisms. This would allow Endy and his team to build a language scientists could use to carefully engineer gene expression – what they call “the layer between the genome and all the dynamic processes of life.”
According to Ziv Bar-Joseph, a computational biologist at Carnegie Mellon University, gene expression isn’t that different from the way computing systems talk to each other. You see the same behavior in system after system. “That’s also very common in computing,” he says. Indeed, since the ’60s, computers have been built to operate much like cells and other biologically systems. They’re self-contained operations with standard ways of trading information with each other.
The BIOFAB project is still in the early stages. Endy and the team are creating the most basic of building blocks — the “grammar” for the language. Their latest achievement, recently reported in the journal Science, has been to create a way of controlling and amplifying the signals sent from the genome to the cell. Endy compares this process to an old fashioned telegraph.