Reference: Scientific Journal Publishes Conclusive Evidence of Super-Thermite Across Multiple Samples of World Trade Center Dust

09 Terrorism, Analysis, Articles & Chapters, Reform
0Shares

Concluding sentence:

Based on these observations, we conclude that the red layer of the red/gray chips we have discovered in the WTC dust is active, unreacted themite material, incorporating nanotechnology, and is a highly energetic pyrotechnic or explosive material.

Bentham Open Access 25 Pages with Full Photographic and Other Graphical and Electromagnetic Evidence
Bentham Open Access 25 Pages with Full Photographic and Other Graphical and Electromagnetic Evidence

Abstract:

We have discovered distinctive red/gray chips in all the samples we have studied of the dust produced by the destruction of the World Trade Center. Examination of four of these samples, collected from separate sites, is reported in this paper. These red/gray chips show marked similarities in all four samples. One sample was collected by a Manhattan resident about ten minutes after the collapse of the second WTC Tower, two the next day, and a fourth about a week later. The properties of these chips were analyzed using optical microscopy, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (XEDS), and differential scanning calorimetry (DSC). The red material contains grains approximately 100 nm across which are largely iron oxide, while aluminum is contained in tiny plate-like structures. Separation of components using methyl ethyl ketone demonstrated that elemental aluminum is present. The iron oxide and aluminum are intimately mixed in the red material. When ignited in a DSC device the chips exhibit large but narrow exotherms occurring at approximately 430 °C, far below the normal ignition temperature for conventional thermite. Numerous iron-rich spheres are clearly observed in the residue following the ignition of these peculiar red/gray chips. The red portion of these chips is found to be an unreacted thermitic material and highly energetic.

Keywords:

JScanning electron microscopy, X-ray energy dispersive spectroscopy, Differential scanning calorimetry, DSC analysis, World Trade Center, WTC dust, 9/11, Iron-rich microspheres, Thermite, Super-thermite, Energetic nanocomposites, Nano-thermite

Affiliation:

Department of Chemistry, University of Copenhagen, Copenhagen, DK-2100, Denmark.

Financial Liberty at Risk-728x90




liberty-risk-dark