Chuck Spinney: Freeman Dyson – Great Science Demands Great Blunders and Good Losers – Nature Never Loses and Always Plays Fair

Commercial Intelligence, Cultural Intelligence, Earth Intelligence
Chuck Spinney
Chuck Spinney

The author of the attached book review is a brilliant writer as well as one of the last of the great 20th Century scientists. “The Case for Blunders” is an important subject, because the confusion of theory with facts is perhaps the most persistent “Orientation” problem misshaping the OODA loops driving contemporary political discourse in economics, social policy, and defense policy as well as in the practice of institutional “big” science (where scientists are forced to cope with the conformist pressures of publication, gatekeeping, obtaining grants, etc). Dyson explains how practice of good science resolves this confusion in a constructive way.

The Case for Blunders

Freeman Dyson

New York Review of Books, 6 March 2014

Amazon Page
Amazon Page

Review: Brilliant Blunders: From Darwin to Einstein—Colossal Mistakes by Great Scientists That Changed Our Understanding of Life and the Universe, by Mario Livio, Simon and Schuster, 341 pp., $26.00

Science consists of facts and theories. Facts and theories are born in different ways and are judged by different standards. Facts are supposed to be true or false. They are discovered by observers or experimenters. A scientist who claims to have discovered a fact that turns out to be wrong is judged harshly. One wrong fact is enough to ruin a career.

Theories have an entirely different status. They are free creations of the human mind, intended to describe our understanding of nature. Since our understanding is incomplete, theories are provisional. Theories are tools of understanding, and a tool does not need to be precisely true in order to be useful. Theories are supposed to be more-or-less true, with plenty of room for disagreement. A scientist who invents a theory that turns out to be wrong is judged leniently. Mistakes are tolerated, so long as the culprit is willing to correct them when nature proves them wrong.

Brilliant Blunders, by Mario Livio, is a lively account of five wrong theories proposed by five great scientists during the last two centuries. These examples give for nonexpert readers a good picture of the way science works. The inventor of a brilliant idea cannot tell whether it is right or wrong. Livio quotes the psychologist Daniel Kahneman describing how theories are born: “We can’t live in a state of perpetual doubt, so we make up the best story possible and we live as if the story were true.” A theory that began as a wild guess ends as a firm belief. Humans need beliefs in order to live, and great scientists are no exception. Great scientists produce right theories and wrong theories, and believe in them with equal conviction.

The essential point of Livio’s book is to show the passionate pursuit of wrong theories as a part of the normal development of science. Science is not concerned only with things that we understand. The most exciting and creative parts of science are concerned with things that we are still struggling to understand. Wrong theories are not an impediment to the progress of science. They are a central part of the struggle.

. . . . . . .

The five chief characters in Livio’s drama are Charles Darwin, William Thomson (Lord Kelvin), Linus Pauling, Fred Hoyle, and Albert Einstein. After reading Livio’s account, I look on the history of science in a new way. In every century and every science, I see brilliant blunders. Isaac Newton’s biggest blunder was his corpuscular theory of light, which had light consisting of a spray of little particles traveling along straight lines. In the nineteenth century, James Clerk Maxwell discovered the laws of electromagnetism and proposed that light consists of electromagnetic waves. In the twentieth, Einstein proved that Newton and Maxwell were both right and both wrong, because light behaves like particles in one situation and like waves in another.

The chief difference betwen science and other human enterprises such as warfare and politics is that brilliant blunders in science are less costly. Hannibal’s brilliant crossing of the Alps to invade Italy from the north resulted in the ruin and total destruction of his homeland. Two thousand years later, the brilliant attack on Pearl Harbor cost the Japanese emperor his empire. Even the worst scientific blunders do not do so much damage.

The worst political blunder in the history of civilization was probably the decision of the emperor of China in the year 1433 to stop exploring the oceans and to destroy the ships capable of exploration and the written records of their voyages. In no way can this blunder be called brilliant. Before the decision, China had a fleet of ocean-going ships bigger and more capable than any European ships. China was roughly level with Europe in scientific knowledge and far ahead in the technologies of printing, navigation, and rocketry. As a consequence of the decision, China fell disastrously behind in science and technology, and is only catching up now after six hundred years. The decision was the result of powerful people pursuing partisan squabbles and neglecting the long-range interests of the empire. This is a disease to which governments of all kinds, including democracies, are fatally susceptible.

Another cause of catastrophic blunders is religion. A legendary example of a religious blunder is the story of Tsar Lazar, king of Serbia in the year 1389 when his kingdom was invaded by the Turks. He confronted the Turkish army on the fatal battlefield of Kosovo Polje. The story is told in the Serbian national epic The Battle of Kosovo. The Virgin Mary happened to be in Jerusalem at the time when the Turks invaded, and sent a falcon with a message for the tsar. The falcon arrived on the battlefield and told the tsar that he must make a choice between an earthly and a heavenly kingdom. If he chose the earthly kingdom, his army would defeat the Turks and he would continue his reign in Serbia. If he chose the heavenly kingdom, his army would be annihilated and his people would become slaves of the Ottoman Empire. Being a very pious monarch with his mind concentrated on spiritual virtue, the tsar naturally chose the heavenly kingdom, and his people paid for his choice by losing their freedom.

. . . . . . .

Seven years after Darwin published The Origin of Species, without any satisfactory explanation of hereditary variations, the Austrian monk Gregor Mendel published his paper “Experiments in Plant Hybridization” in the journal of the Brünn Natural History Society. Mendel had solved Darwin’s problem. He proposed that inheritance is carried by discrete units, later known as genes, that do not blend but are carried unchanged from generation to generation. The Mendelian theory of inheritance fits perfectly with Darwin’s theory of natural selection. Mendel had read Darwin’s book, but Darwin never read Mendel’s paper..

In Livio’s list of brilliant blunderers, Darwin and Einstein were good losers, Kelvin and Pauling were not so good, and Hoyle was the worst. The greatest scientists are the best losers. That is one of the reasons why we love the game. As Einstein said, God is sophisticated but not malicious. Nature never loses, and she plays fair.


Einstein’s ‘Blunder’ May 8, 2014

Respectable Blunders April 3, 2014

Opt in for free daily update from this free blog. Separately The Steele Report ($11/mo) offers weekly text report and live webinar exclusive to paid subscribers, who can also ask questions of Robert. Or donate to ask questions directly of Robert.